view src/core/ngx_slab.h @ 9270:3d455e37abf8

Core: PID file writing synchronization. Now, ngx_daemon() does not call exit() in the parent process immediately, but instead waits for the child process to signal it actually started (and wrote the PID file if configured to). This ensures that the PID file already exists when the parent process exits. To make sure that signal handlers won't cause unexpected logging in the parent process if the child process dies (for example, due to errors when writing the PID file), ngx_init_signals() is moved to the child process. This resolves "PID file ... not readable (yet?) after start" and "Failed to parse PID from file..." errors as observed with systemd. Note that the errors observed are considered to be a bug in systemd, which isn't able to work properly with traditional Unix daemons. Still, the workaround is implemented to make sure there will be no OS vendor patches trying to address this.
author Maxim Dounin <mdounin@mdounin.ru>
date Mon, 13 May 2024 06:13:22 +0300
parents 69f9ee0342db
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_SLAB_H_INCLUDED_
#define _NGX_SLAB_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>


typedef struct ngx_slab_page_s  ngx_slab_page_t;

struct ngx_slab_page_s {
    uintptr_t         slab;
    ngx_slab_page_t  *next;
    uintptr_t         prev;
};


typedef struct {
    ngx_uint_t        total;
    ngx_uint_t        used;

    ngx_uint_t        reqs;
    ngx_uint_t        fails;
} ngx_slab_stat_t;


typedef struct {
    ngx_shmtx_sh_t    lock;

    size_t            min_size;
    size_t            min_shift;

    ngx_slab_page_t  *pages;
    ngx_slab_page_t  *last;
    ngx_slab_page_t   free;

    ngx_slab_stat_t  *stats;
    ngx_uint_t        pfree;

    u_char           *start;
    u_char           *end;

    ngx_shmtx_t       mutex;

    u_char           *log_ctx;
    u_char            zero;

    unsigned          log_nomem:1;

    void             *data;
    void             *addr;
} ngx_slab_pool_t;


void ngx_slab_sizes_init(void);
void ngx_slab_init(ngx_slab_pool_t *pool);
void *ngx_slab_alloc(ngx_slab_pool_t *pool, size_t size);
void *ngx_slab_alloc_locked(ngx_slab_pool_t *pool, size_t size);
void *ngx_slab_calloc(ngx_slab_pool_t *pool, size_t size);
void *ngx_slab_calloc_locked(ngx_slab_pool_t *pool, size_t size);
void ngx_slab_free(ngx_slab_pool_t *pool, void *p);
void ngx_slab_free_locked(ngx_slab_pool_t *pool, void *p);


#endif /* _NGX_SLAB_H_INCLUDED_ */