view src/core/ngx_crypt.c @ 9270:3d455e37abf8

Core: PID file writing synchronization. Now, ngx_daemon() does not call exit() in the parent process immediately, but instead waits for the child process to signal it actually started (and wrote the PID file if configured to). This ensures that the PID file already exists when the parent process exits. To make sure that signal handlers won't cause unexpected logging in the parent process if the child process dies (for example, due to errors when writing the PID file), ngx_init_signals() is moved to the child process. This resolves "PID file ... not readable (yet?) after start" and "Failed to parse PID from file..." errors as observed with systemd. Note that the errors observed are considered to be a bug in systemd, which isn't able to work properly with traditional Unix daemons. Still, the workaround is implemented to make sure there will be no OS vendor patches trying to address this.
author Maxim Dounin <mdounin@mdounin.ru>
date Mon, 13 May 2024 06:13:22 +0300
parents 1064ea81ed3a
children
line wrap: on
line source


/*
 * Copyright (C) Maxim Dounin
 */


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_crypt.h>
#include <ngx_md5.h>
#include <ngx_sha1.h>


#if (NGX_CRYPT)

static ngx_int_t ngx_crypt_apr1(ngx_pool_t *pool, u_char *key, u_char *salt,
    u_char **encrypted);
static ngx_int_t ngx_crypt_plain(ngx_pool_t *pool, u_char *key, u_char *salt,
    u_char **encrypted);
static ngx_int_t ngx_crypt_ssha(ngx_pool_t *pool, u_char *key, u_char *salt,
    u_char **encrypted);
static ngx_int_t ngx_crypt_sha(ngx_pool_t *pool, u_char *key, u_char *salt,
    u_char **encrypted);


static u_char *ngx_crypt_to64(u_char *p, uint32_t v, size_t n);


ngx_int_t
ngx_crypt(ngx_pool_t *pool, u_char *key, u_char *salt, u_char **encrypted)
{
    if (ngx_strncmp(salt, "$apr1$", sizeof("$apr1$") - 1) == 0) {
        return ngx_crypt_apr1(pool, key, salt, encrypted);

    } else if (ngx_strncmp(salt, "{PLAIN}", sizeof("{PLAIN}") - 1) == 0) {
        return ngx_crypt_plain(pool, key, salt, encrypted);

    } else if (ngx_strncmp(salt, "{SSHA}", sizeof("{SSHA}") - 1) == 0) {
        return ngx_crypt_ssha(pool, key, salt, encrypted);

    } else if (ngx_strncmp(salt, "{SHA}", sizeof("{SHA}") - 1) == 0) {
        return ngx_crypt_sha(pool, key, salt, encrypted);
    }

    /* fallback to libc crypt() */

    return ngx_libc_crypt(pool, key, salt, encrypted);
}


static ngx_int_t
ngx_crypt_apr1(ngx_pool_t *pool, u_char *key, u_char *salt, u_char **encrypted)
{
    ngx_int_t          n;
    ngx_uint_t         i;
    u_char            *p, *last, final[16];
    size_t             saltlen, keylen;
    ngx_md5_t          md5, ctx1;

    /* Apache's apr1 crypt is Poul-Henning Kamp's md5 crypt with $apr1$ magic */

    keylen = ngx_strlen(key);

    /* true salt: no magic, max 8 chars, stop at first $ */

    salt += sizeof("$apr1$") - 1;
    last = salt + 8;
    for (p = salt; *p && *p != '$' && p < last; p++) { /* void */ }
    saltlen = p - salt;

    /* hash key and salt */

    ngx_md5_init(&md5);
    ngx_md5_update(&md5, key, keylen);
    ngx_md5_update(&md5, (u_char *) "$apr1$", sizeof("$apr1$") - 1);
    ngx_md5_update(&md5, salt, saltlen);

    ngx_md5_init(&ctx1);
    ngx_md5_update(&ctx1, key, keylen);
    ngx_md5_update(&ctx1, salt, saltlen);
    ngx_md5_update(&ctx1, key, keylen);
    ngx_md5_final(final, &ctx1);

    for (n = keylen; n > 0; n -= 16) {
        ngx_md5_update(&md5, final, n > 16 ? 16 : n);
    }

    ngx_memzero(final, sizeof(final));

    for (i = keylen; i; i >>= 1) {
        if (i & 1) {
            ngx_md5_update(&md5, final, 1);

        } else {
            ngx_md5_update(&md5, key, 1);
        }
    }

    ngx_md5_final(final, &md5);

    for (i = 0; i < 1000; i++) {
        ngx_md5_init(&ctx1);

        if (i & 1) {
            ngx_md5_update(&ctx1, key, keylen);

        } else {
            ngx_md5_update(&ctx1, final, 16);
        }

        if (i % 3) {
            ngx_md5_update(&ctx1, salt, saltlen);
        }

        if (i % 7) {
            ngx_md5_update(&ctx1, key, keylen);
        }

        if (i & 1) {
            ngx_md5_update(&ctx1, final, 16);

        } else {
            ngx_md5_update(&ctx1, key, keylen);
        }

        ngx_md5_final(final, &ctx1);
    }

    /* output */

    *encrypted = ngx_pnalloc(pool, sizeof("$apr1$") - 1 + saltlen + 1 + 22 + 1);
    if (*encrypted == NULL) {
        return NGX_ERROR;
    }

    p = ngx_cpymem(*encrypted, "$apr1$", sizeof("$apr1$") - 1);
    p = ngx_copy(p, salt, saltlen);
    *p++ = '$';

    p = ngx_crypt_to64(p, (final[ 0]<<16) | (final[ 6]<<8) | final[12], 4);
    p = ngx_crypt_to64(p, (final[ 1]<<16) | (final[ 7]<<8) | final[13], 4);
    p = ngx_crypt_to64(p, (final[ 2]<<16) | (final[ 8]<<8) | final[14], 4);
    p = ngx_crypt_to64(p, (final[ 3]<<16) | (final[ 9]<<8) | final[15], 4);
    p = ngx_crypt_to64(p, (final[ 4]<<16) | (final[10]<<8) | final[ 5], 4);
    p = ngx_crypt_to64(p, final[11], 2);
    *p = '\0';

    return NGX_OK;
}


static u_char *
ngx_crypt_to64(u_char *p, uint32_t v, size_t n)
{
    static u_char   itoa64[] =
        "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

    while (n--) {
        *p++ = itoa64[v & 0x3f];
        v >>= 6;
    }

    return p;
}


static ngx_int_t
ngx_crypt_plain(ngx_pool_t *pool, u_char *key, u_char *salt, u_char **encrypted)
{
    size_t   len;
    u_char  *p;

    len = ngx_strlen(key);

    *encrypted = ngx_pnalloc(pool, sizeof("{PLAIN}") - 1 + len + 1);
    if (*encrypted == NULL) {
        return NGX_ERROR;
    }

    p = ngx_cpymem(*encrypted, "{PLAIN}", sizeof("{PLAIN}") - 1);
    ngx_memcpy(p, key, len + 1);

    return NGX_OK;
}


static ngx_int_t
ngx_crypt_ssha(ngx_pool_t *pool, u_char *key, u_char *salt, u_char **encrypted)
{
    size_t       len;
    ngx_int_t    rc;
    ngx_str_t    encoded, decoded;
    ngx_sha1_t   sha1;

    /* "{SSHA}" base64(SHA1(key salt) salt) */

    /* decode base64 salt to find out true salt */

    encoded.data = salt + sizeof("{SSHA}") - 1;
    encoded.len = ngx_strlen(encoded.data);

    len = ngx_max(ngx_base64_decoded_length(encoded.len), 20);

    decoded.data = ngx_pnalloc(pool, len);
    if (decoded.data == NULL) {
        return NGX_ERROR;
    }

    rc = ngx_decode_base64(&decoded, &encoded);

    if (rc != NGX_OK || decoded.len < 20) {
        decoded.len = 20;
    }

    /* update SHA1 from key and salt */

    ngx_sha1_init(&sha1);
    ngx_sha1_update(&sha1, key, ngx_strlen(key));
    ngx_sha1_update(&sha1, decoded.data + 20, decoded.len - 20);
    ngx_sha1_final(decoded.data, &sha1);

    /* encode it back to base64 */

    len = sizeof("{SSHA}") - 1 + ngx_base64_encoded_length(decoded.len) + 1;

    *encrypted = ngx_pnalloc(pool, len);
    if (*encrypted == NULL) {
        return NGX_ERROR;
    }

    encoded.data = ngx_cpymem(*encrypted, "{SSHA}", sizeof("{SSHA}") - 1);
    ngx_encode_base64(&encoded, &decoded);
    encoded.data[encoded.len] = '\0';

    return NGX_OK;
}


static ngx_int_t
ngx_crypt_sha(ngx_pool_t *pool, u_char *key, u_char *salt, u_char **encrypted)
{
    size_t      len;
    ngx_str_t   encoded, decoded;
    ngx_sha1_t  sha1;
    u_char      digest[20];

    /* "{SHA}" base64(SHA1(key)) */

    decoded.len = sizeof(digest);
    decoded.data = digest;

    ngx_sha1_init(&sha1);
    ngx_sha1_update(&sha1, key, ngx_strlen(key));
    ngx_sha1_final(digest, &sha1);

    len = sizeof("{SHA}") - 1 + ngx_base64_encoded_length(decoded.len) + 1;

    *encrypted = ngx_pnalloc(pool, len);
    if (*encrypted == NULL) {
        return NGX_ERROR;
    }

    encoded.data = ngx_cpymem(*encrypted, "{SHA}", sizeof("{SHA}") - 1);
    ngx_encode_base64(&encoded, &decoded);
    encoded.data[encoded.len] = '\0';

    return NGX_OK;
}

#endif /* NGX_CRYPT */